Skip to main content
Log in

Effects of substitutional Mo and Cr on site occupation and diffusion of hydrogen in the β-phase vanadium hydride by first principles calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The effects of substitutional Mo and Cr in β-phase VH0.5 and V1−xMxH0.5625 (M = Mo, Cr; x = 0, 0.0625, 0.125) on the site occupation and diffusion paths of hydrogen are investigated by quantum mechanical calculations based on density functional theory. Fundamental processes of the interstitial-assisted mechanisms are systematically figured out, and specific values of the site energies are obtained with zero-point energy (ZPE) corrections. Hydrogen atoms are found to occupy the octahedral (O) interstitial sites in β-phase (V + M)H0.5 in the ground state. Upon increasing the hydrogen concentration H/(V + M) higher than 0.5, the additional H atom prefers to reside at the tetrahedral (T) interstitial sites. The minimum energy paths of hydrogen diffusion are analyzed by the Nudged Elastic Band method with ZPE corrections. The site occupation energy and activation energy for each hydrogen diffusion path are found to be strongly influenced by the substitution of Mo or Cr into vanadium hydride. The results presented in this work indicate that the additional H prefers to migrate directly from T site to the nearest neighboring T site without crossing O site. The energy barriers in the order of 0.253–0.276 eV of hydrogen migration in the V1−xMxH0.5625 hydrides obtained from ab initio simulations are in good agreement with the experimental data by means of 1H NMR measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127

    Article  CAS  Google Scholar 

  2. Sakintunaa B, Darkrimb FL, Hirscherc M (2007) Int J Hydrogen Energy 32:1121

    Article  CAS  Google Scholar 

  3. Schlapbach L, Züttel A (2001) Nature 414:353

    Article  CAS  Google Scholar 

  4. Hauck J, Schenk HJ (1977) J. Less-Common Metals 51:251

    Article  CAS  Google Scholar 

  5. Schober T, Wenzl H (1978) In: Alefeld G, Volkl J (eds) Hydrogen in metals II, topics in applied physics: application-oriented properties, vol 29. Springer, Berlin

    Google Scholar 

  6. Matsunaga T, Kon M, Washio K, Shinozawa T, Ishikiriyama M (2009) Int J Hydrogen Energy 34:1458

    Article  CAS  Google Scholar 

  7. Fukai Y (2005) The metal-hydrogen system. Springer, Berlin

    Google Scholar 

  8. Akiba E, Iba H (1998) Intermetallics 6:461

    Article  CAS  Google Scholar 

  9. Kubo K, Itoh H, Takahashi T, Ebisawa T, Kabutomori T, Nakamura Y, Akiba E (2003) J Alloys Compd 452:356

    Google Scholar 

  10. Shibuya M, Nakamura J, Enoki H, Akiba E (2009) J Alloys Compd 475:543–545

    Article  CAS  Google Scholar 

  11. Tominaga Y, Nishimura S, Amemiya T, Fuda T, Tamura T, Kuriiwa T, Kamegawa A, Okada M (1999) Mater Trans, JIM 40(9):871

    Article  CAS  Google Scholar 

  12. Kuriiwa T, Tamura T, Amemiya T, Fuda T, Kamegawa A, Takamura H, Okada M (1999) J Alloys Compd 433:293

    Google Scholar 

  13. Tamura T, Kamegawa A, Takamura H, Okada M (1862) Mater Trans 2001:42

    Google Scholar 

  14. Tamura T, Kazumi T, Kamegawa A, Takamura H, Okada M (2002) Mater Trans 42:2753

    Article  Google Scholar 

  15. Asano K, Hayashi S, Nakamura Y, Akiba E (2010) J Alloys Compd 507:399

    Article  CAS  Google Scholar 

  16. Asano K, Hayashi S, Nakamura Y, Akiba E (2012) J Alloys Compd 524:63

    Article  CAS  Google Scholar 

  17. Johansson R, Ahuja R, Eriksson O, Hjorvarsson B, Scheicher RH (2015) Sci Rep 5:10301

    Article  Google Scholar 

  18. Kim J, Yoo J-H, Cho S-W (2014) Mater Chem Phys 48:533

    Article  CAS  Google Scholar 

  19. Schulz R, Boily S, Zaluski L, Zaluka A, Tessier P, Strom-Olsen JO (1995) Innov Metal Mater 63:529

    Google Scholar 

  20. Mananes A, Duque F, Mendez F, Lopez MJ, Alonso JA (2003) J Chem Phys 119:5128

    Article  CAS  Google Scholar 

  21. Yarovskya I, Goldbergb A (2005) Mol Simul 31:475

    Article  CAS  Google Scholar 

  22. Masuda J, Hashizume K, Otsuka T, Tanabe T, Hatano Y, Nakamura Y, Nagasaka T, Muroga T (2007) J Nucl Mater 1256:363

    Google Scholar 

  23. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  24. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  25. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  26. Kresse G, Joubert D (1999) Phys Rev 59:1758

    Article  CAS  Google Scholar 

  27. Kresse G, Hafner J (1994) Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  29. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  CAS  Google Scholar 

  30. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  31. Methfessel M, Paxton AT (1989) Phys Rev B 40:3616

    Article  CAS  Google Scholar 

  32. Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  33. Henkelman G, Arnaldsson A, Jónsson H (2006) Comput Mater Sci 36:254

    Article  Google Scholar 

  34. Sanville E, Kenny SD, Smith SD, Henkelman G (2007) J Comput Chem 28:899

    Article  CAS  Google Scholar 

  35. Tang W, Sanville E, Henkelman G (2009) J Phys: Condens Matter 21:084204

    CAS  Google Scholar 

  36. Noda Y, Masumoto K, Koike S, Suzuki T, Sato S (1986) Acta Cryst B42:529

    Article  CAS  Google Scholar 

  37. Kajitani T, Hirabayashi M (1985) Zeitschrift fur Physikalische Chemie Neue Folge, Bd 145:S27

    Article  Google Scholar 

  38. Ogawa H (2013) J Alloys Compd 580:S131

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the project on the establishment of Master’s in Nanotechnology program of Vietnam Japan University for providing the facilities. This work was supported in part by a grant for research from Vietnam National University, Hanoi (VNU) under project number QG.15.09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Viet Bac Phung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phung, T.V.B., Ogawa, H., Dinh, V.A. et al. Effects of substitutional Mo and Cr on site occupation and diffusion of hydrogen in the β-phase vanadium hydride by first principles calculations. Theor Chem Acc 138, 16 (2019). https://doi.org/10.1007/s00214-018-2405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2405-y

Keywords

Navigation